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Abstract. Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make

coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-

surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically

differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using

this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by5

calibrating against observations. This paper describes adJULES and demonstrates its ability to improve the model-data fit using

eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability

to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant

Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of

the sites used in the study, a third of which give similar reduction in errors as site specific optimisations. The new improved10

parameter set for JULES is presented along with the associated uncertainties for each parameter.

1 Introduction

Land-surface models (LSMs) have formed an important component of climate models for many decades now (Pitman, 2003).

First generation land-surface schemes focussed on providing the lower boundary condition for atmospheric models by calcu-

lating the land-atmosphere fluxes of heat, moisture and momentum, and updating the surface state variables that these fluxes15

depend on (e.g. soil temperature, soil moisture, snow-cover). In the mid to late 1990s some land-surface modelling groups

began to introduce additional aspects of biology into their schemes, most notably the dynamic control of transpiration by leaf

stomata and the connected rates of leaf photosynthesis (Sellers et al. (1997); Cox et al. (1999)).

In the early 2000s, climate modelling groups began to use the carbon fluxes simulated by LSMs within first generation

climate-carbon cycle models (Cox et al. (2000), Friedlingstein et al. (2001)). These early results, and a subsequent model inter-20

comparison (Friedlingstein et al., 2006), highlighted the uncertainties associated with land carbon-climate feedbacks. The 5th

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5 (Stocker et al., 2013)) for the first time

routinely included models with an interactive carbon cycle (now called Earth System Models or ESMs), confirming that land

responses to climate and CO2 are amongst the largest of the uncertainties in future climate change projections (Arora and Boer

(2005); Brovkin et al. (2013); Jones et al. (2013); Friedlingstein et al. (2013)).25

1

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2015-281, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



Uncertainties in LSMs arise from two major sources: (a) process uncertainty, and (b) parameter uncertainty. Process uncer-

tainty includes the misrepresentation of land-surface processes and also the neglect of important processes (such as nitrogen-

limitations on plants growth, see for example. Thornton et al. (2007); Zaehle et al. (2010)). The drive to reduce process

uncertainty almost invariably leads to increases in LSM complexity, which typically leads to the introduction of additional

internal model parameters. Parameter uncertainty arises from uncertainty in these internal model parameters. The evolution of5

LSMs has therefore involved an attempt to reduce process uncertainty by increasing model realism/complexity, but at the cost

of increasing parameter uncertainty. This paper concerns the development and application of a technique to reduce parameter

uncertainty in the widely used Joint UK Land Environment Simulator (JULES) LSM (Best et al. (2011); Clark et al. (2011)).

Optimisation techniques come under the umbrella of model-data fusion and range from simple ad-hoc parameter tuning to

rigorous data assimilation frameworks. These approaches have been used in a number of studies, covering various LSM, to10

derive vectors of parameters that improve model-data fit significantly (e.g. Wang et al. (2001, 2007); Reichstein et al. (2003);

Knorr and Kattge (2005); Raupach et al. (2005); Santaren et al. (2007); Thum et al. (2008);Williams et al. (2009);Peng et al.

(2011)). Many of these studies calibrate the model at individual measurement sites. Given the small spatial footprint of each

flux tower, this can often result in over tuning. The optimised model parameters are site-specific and often struggle to perform

as well when generalised over other sites(Xiao et al., 2011).15

The majority of LSMs group vegetation into a small number of plant functional types (PFTs). Model parameters are assumed

to be generic over each PFT. Through different optimisation techniques, some studies have tried to assess the robustness of

PFT-specific parameters (e.g. (Kuppel et al., 2014)). Medvigy et al. (2009) and Verbeeck et al. (2011) both show that parameters

derived at one site can perform well on a similar site and, in a later study (Medvigy and Moorcroft (2011)), over the surrounding

region. However, a contradictory study by Groenendijk et al. (2010) found that there was cross-site parameter variability after20

optimisation within the PFT groupings.

In the last few years, there has been a move towards deriving PFT-specific parameters using data from multiple sites, the

results of which have been generally positive, e.g. Xiao et al. (2011) and Kuppel et al. (2012). Both of these studies used

data from multiple sites in their optimisation (calling it multisite optimisation) and have commented on the robustness of this

technique showing that the choice of initial parameter vector had little effect on the optimised values.25

Kuppel et al. (2012) compared different approaches for finding generic PFT-specific parameters, such as averaging optimised

parameter vectors over PFTs and directly optimising over multiple sites. They found that the latter method was best for finding

PFT-specific parameters. The multisite optimisation procedure was refined in Kuppel et al. (2014), extended to other PFTs, and

evaluated at a global scale.

For global modelling, there is a clear need to find generic parameters and associated uncertainties by PFT, by optimising30

against observations in a reproducible way. This paper presents a model-data fusion framework that allows data from multiple

sites to be used simultaneously in order to improve the JULES land surface model.

This paper aims to answer the following questions:

– Can an optimum vector of generic parameters for each of the JULES PFT classes be found?

2

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2015-281, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



– How does the new PFT parameter vector compare to parameter vectors found by optimising each site individually?

– How robust is the adJULES system when optimising over multiple sites?

– What uncertainty is associated with each parameter?

In section 2, methods and data used in the study are described. The JULES land surface model and our new data assimilation

system (adJULES), are described. The data used, and parameters chosen to be optimised in the study, are also discussed.5

In section 3, the results are presented. The methodology for optimising over multiple sites simultaneously is validated, and

optimum parameter values are provided for each JULES PFT. The performance of the new parameter sets is assessed and

shown to significantly improve the fit of the JULES model to the observations. The conclusions are laid out in section 4.

2 Methods and Data

2.1 The JULES land-surface model10

The JULES land-surface model (Best et al., 2011; Clark et al., 2011) simulates the interactions between the land and atmo-

sphere. Originally developed from the Met Office Surface Exchange Scheme (MOSES) (Cox et al., 1999), JULES can be used

‘offline’ with observed atmospheric forcing data, or can be coupled into a global circulation model (GCM). JULES is the land

surface model used in the UK Met Office Unified Model.

JULES is a mechanistic land surface model including physical, biophysical, and biochemical processes that control the15

radiation, heat, water, and carbon fluxes in response to time-series of the state of the overlying atmosphere (Best et al., 2011;

Clark et al., 2011). Processes such as photosynthesis, evaporation, plant growth and soil microbial activity are all linked through

mathematical equations that quantify how soil moisture and temperature govern evapotranspiration, heat balance, respiration,

photosynthesis and carbon assimilation (Best et al., 2011; Clark et al., 2011). JULES runs at a given sub-daily step (typically

30 minutes), using meteorological drivers of rainfall, incoming radiation, temperature, humidity and windspeed as inputs.20

Vegetation in the JULES model is categorised into five plant functional types (PFTs); broadleaf trees (BT), needleleaf trees

(NT), C3 grasses (C3G), C4 grasses (C4G), and shrubs (Sh). Default parameters for these PFT classes are taken from a previous

ad hoc calibration (Blyth et al., 2010).

2.2 Data assimilation system

Even a relatively simplistic land-surface representation such as JULES has over a hundred internal parameters representing the25

environmental sensitivities of the various land-surface types and PFTs within the model. In general these parameters are chosen

to represent measurable quantities within the real world (e.g. aerodynamic roughness length, surface albedo, plant root-depth),

which allows observationally-based estimates of these parameters to be made in the early stages of the model development

process. However, the detailed performance of a land-surface model can be very sensitive to such internal parameters. It is

therefore common for land-surface modellers to calibrate their models against available observations (e.g. Blyth et al. (2010)).30
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This is typically carried-out in a rather ad hoc manner with the modeller varying the parameters that he/she believes are most

relevant to the model performance. Such model tuning is by its very nature subjective, lacks reproducibility, and is often

sub-optimal because the modeller is unable to explore the full feasible parameter space through such a manual technique.

This paper describes a more objective approach to land-surface model calibration, adopting ideas from the applied mathe-

matics of data assimilation as used widely in weather forecasting, and motivated by pioneering attempts at carbon cycle data5

assimilation (Rayner et al. (2005); Kaminski et al. (2013)). It utilises the adjoint of the JULES model (called adJULES), derived

by automatic differentiation, which enables efficient and objective calibration against observations. Importantly, adJULES also

allows the uncertainties in the best-fit parameters to be estimated. Such uncertainties are important information for model users,

and can also form the basis for observation-constrained estimates of prior probability density functions for the land-surface

parameter perturbations used in climate model ensembles (e.g. Booth et al. (2012)).10

2.2.1 The theory of adJULES

JULES generates a modelled time-series for a given vector of internal parameters, z. A cost function, f(z) is defined as a

weighted sum of squares of differences between the modelled and the observed time-series. The cost consists of the difference

between the vector of model outputs at time t, mt and the vector of observations at time t, ot, combined with a term quadratic

in the difference between initial parameter values z0 and values z:15

f(z) =

s∑
t=1

(mt −ot)
TR−1(mt −ot)+ (z− z0)

TB−1(z− z0). (1)

Here R is the observed covariance in the errors (mt −ot) and B describes the prior covariances in the parameters with a

diagonal matrix proportional to the inverse square of the ranges allowed for each parameter. The constant of proportionality

λ, with default value 1, controls the width of the prior distribution and ultimately the relative importance of the background

term. Larger values of λ help condition the problem (Bouttier and Courtier, 1999) and force parameter values to be close to the20

initial value z0. All parameters and observations are equally weighted in this cost function.

The optimal vector of parameters is the vector z that minimises the cost function (Eq. 1). The aim of adJULES is to find this

vector. adJULES minimises the cost function iteratively using the gradient descent algorithm L-BFGS-B (Byrd et al. (1995),

optim: R Development Core Team (2015)). This algorithm is based on the BFGS quasi-Newton method but is modified to

use limited memory and box constraints, so each parameter is given an upper and lower bound based on expert opinion or on25

physical reasoning (Byrd et al., 1995).

At each iteration, the gradient ∇f(z) of the cost function f(z) is computed with respect to all parameters, using the adjoint

model of JULES. The adjoint is generated with the automatic differentiator tool TAF (Transformation of Algorithms in Fortran;

see Giering et al. (2005)) in ‘reverse mode’ (rather than ’forward mode’) for computational efficiency. Automatic differentiation

relies on using the chain rule, the choice of forward or reverse mode refers to the order in which the derivatives are computed.30

Calculating ∇f(z) is most efficient in reverse mode as only one sweep is needed to generate the derivative with respect to all

parameters (Bartholomew-Biggs et al., 2000).
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Once the cost function reaches the minimum, a locally optimal parameter vector z1 is returned and the second derivative of

the cost function with respect to the parameters can be used to calculate posterior uncertainties. This process is then repeated,

the locally optimised parameters are fed back through JULES, generating a new modelled time-series and hence a new cost

function. The loop is terminates when the modelled time series no longer improves (Fig. 1).

Figure 1. Schematic of the adJULES parameter estimation system starting with the initial parameter vector z0. This is usually based on

default JULES parameter values (Blyth et al., 2010). The optimised parameter vector is denoted z1.

2.2.2 Multisite Implementation5

In its simplest form, adJULES runs at a single grid-point location and so the derived optimal parameter vector is site specific. On

the other hand, multisite optimisation aims to find values for a common set of parameters, using data from multiple locations.

The definition of the cost function (Eq. 1) can be extended to include the observations from all sites, and its derivative found

in order to use the L-BFGS-B algorithm again. The extended cost function is the sum of the individual cost functions for each

site. Similarly, the first and second derivatives of this new cost function can be defined using the sum of the derivatives at the10

individual sites.

2.3 Eddy covariance flux data

The eddy-covariance flux data used in this study are part of the FLUXNET network (Baldocchi et al., 2001). The FLUXNET

database contains more than 500 locations worldwide, and all the data is processed in a harmonised manner using the standard

methodologies including correction, gap-filling and partitioning (Papale et al., 2006). The sites used in this study were selected15

based on data availability: sites with missing input variables or significant data gaps during the growing the season were

omitted.

5

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2015-281, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



To model photosynthesis Net Ecosystem Exchange (NEE) and Latent Heat Flux (LE), among other fluxes, are required. The

NEE flux, defined as the net flux of CO2, is partitioned into gross primary production (GPP) and ecosystem respiration (Re)

(Reichstein et al., 2005). In this study this GPP flux is used, along with the LE flux to constrain the model.

In an attempt to run the experiments as closely to a standard JULES run as possible, input fields of vegetation structure and

soil type were drawn from the UK Met Office ancillary files used in the HadGEM2 configurations. The LAI seasonal cycle5

used is derived from a MODIS product from Boston University. The values taken for each of the experiment sites correspond

to the closest grid point with values.

2.4 Experimental setup

Version 2.2 of JULES is implemented in the current version of adJULES. This version is set up to calibrate a subset of JULES

soil and vegetation parameters against up to six observables in the vectors mt and ot (Eq. 1): net ecosystem exchange (NEE),10

sensible heat (H), latent heat (LE), surface temperature (T∗), gross primary productivity (GPP) and ecosystem respiration

(Resp).

This study aims to improve the parameters used to define PFTs and therefore it concentrates on vegetation parameters. Table

1 outline the parameters chosen.

One year of FLUXNET data is used for each site considered in this study. Where multiple years are available, the most15

complete year was chosen. For each site, the model is spun up to a steady soil moisture and temperature state. Where possible,

the two years of data preceding the year of comparison were repeatedly applied in the spin-up. Where this was not possible,

the first year of data was repeatedly applied. Only sites with at least two years of data are used in this study, so that the spin-up

year is different from the experiment year. In each case, the model was spun up for at least 50 years. For deciduous sites and

crop sites, leaf area index values are taken from MODIS data for the appropriate year.20

The sites used in each of the PFT classes are described in Appendix A. The FLUXNET database used in this study did not

distinguish between the different types of grasslands. Using Met Office ancillary files, the grasslands were partitioned into C3

grasses and C4 grasses according to fractional cover. In the case of C3 grasses, sites were picked only when the fractional cover

was over 60%. Since the C4 grasses are under represented in the FLUXNET database, this boundary was lowered to include

all sites where C4 grass was the dominant PFT. Crops were not included in either grass class. The photosynthesis model used25

in JULES is based on scaling up observed processes at the leaf scale to represent the canopy. The scaling to canopy level can

be done in several ways, in this study the simple big leaf approach was adopted (Clark et al., 2011), although optimisations can

also be carried-out for more complex canopy radiation options.

All of the sites in each PFT class are used to find the optimal values for the PFT. The second derivative of the cost function

found by the adjoint code is then used to quantify the uncertainties associated with these new parameter vectors.30

For the multisite experiments, the background term was weighted such that the problem remained conditioned but low

enough for useful uncertainties to be generated.
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2.5 Introducing tools for analysis

2.5.1 Different ways to represent parameter uncertainty

As well as generating optimal parameter values, adJULES estimates the uncertainty associated with each parameter. The second

derivative (Hessian) of the cost function,

Hij =
∂2f

∂zi∂zj
(2)5

where f(z) is given by equation (1), evaluated at the optimal parameter value, yields information about the curvature of the

cost function at the local minimum. A ‘sharp’ cost function, where the cost function is steep either side of the optimal parameter

value indicates lower parameter uncertainty. This can also be interpreted as meaning that a small deviation from the optimal

parameter value yields a large increase in cost. Conversely, a ‘flat’ cost function indicates higher parameter uncertainty, or little

change in cost caused by deviation from the optimal parameter value.10

In order to generate statistics associated with the curvature of the cost function, the Hessian is used to generate a trun-

cated multivariate normal distribution (Genz et al., 2015). Using Gibbs sampling (Geman and Geman, 1984), an ensemble

of plausible parameter vectors is generated from this distribution, for a statistically satisfactory match between observations

and modelled time series. The multivariate normal parameter distribution allows for marginal density plots to be generated for

each parameter. When considering these marginal density plots, it is important to remember that they represent only one or15

two dimension of an n-dimensional multivariate normal distributions. The optimal parameter values may not correspond to the

peak of the one-dimensional distributions as a result.

2.5.2 Metric to quantify model fit to data

To measure the improvement exhibited by different parameter vectors, a normalised root-mean-square deviation (ε) is used.

Given a parameter vector, z, a modelled time series mi,t with k data points is generated using JULES, where i denotes one20

of the LE and GPP data streams. For each data stream i, the ε normalised error is calculated as follows

εi =

√∑k
t=1(mi,t −oi,t)2

k
, (3)

and then normalised:

ε̂i =
εi

max(mi,t,oi,t)−min(mi,t,oi,t)
. (4)

After non-dimensionalising both data streams, the final error is given by25

ε̂=
ε̂1 + ε̂2√

2
. (5)

This ensures values are between 0 and 1; 0 representing a perfect match to the observations, 1 a complete mismatch. The closer

the value is to 0, the better the set of parameters z used is at creating modelled time-series resembling the observed time-series.
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3 Results and discussion

In this section, the site-specific optimisations are first considered. By considering each PFT separately, the misfits between the

model and the observations are discussed and the effect of optimising over each site individually to improve model-observation

agreement is considered.

Next, the multisite methodology is validated. This is then used to perform optimisations over each of the PFTs. All of the5

sites in a given PFT are optimised simultaneously to find a generic parameter vector appropriate to the PFT. The new optimised

parameter vectors are presented, along with associated uncertainties. The rest of the section considers the improvement found

using these optimised parameter vectors, and discusses some of the uncertainties and correlations found.

3.1 Single-site optimisations

First, each of the sites was optimised individually in order to find site-specific parameter vectors. As described in section 2.4,10

one year runs at the different sites were optimised against monthly averaged LE and GPP. A site dominated by each PFT was

picked to represent the general improvements made. The main seasonal cycles of latent heat and GPP for the different sites are

shown in Fig. 2.

Most broadleaf sites follow the pattern of Fig. 2(a). Normally, for broadleaf sites, a standard JULES run will underestimate

GPP. The optimisation does a good job in fixing this, bring the modelled time-series closer to the observations. In contrast, LE15

does not improve as much.

Similarly for the needleleaf sites (Fig. 2(b)), the JULES model output tends to overestimate LE and underestimate GPP. The

parameter vector found in the optimisation improves the fit of both data streams, most notably GPP. At sites for which a double

peak seasonality is apparent, the optimised model captures this better than the original model.

GPP is also underestimated for the C3 grass sites (Fig. 2(c)) and, for the majority of the sites, the optimisation does a good20

job of correcting this. The LE flux tends to be at the right magnitude before optimisation, unlike the GPP flux, but adJULES

does not manage to improve this output significantly. In the example shown, the JULES model using the default parameter

already performs very well, so little improvement is needed, but this is not always the case. The new set of parameters is also

good at simulating multiple peaks in the LE and GPP fluxes, when they are observed.

There are only two C4 grass sites in the set and JULES does not perform very well on these before or after optimisation25

(Fig. 2(e)).

The shrub sites, Fig. 2(f), show no general pattern. Some sites overestimate LE, whilst others underestimated it, and similarly

for GPP. The levels of improvement varies over sites. For some of the sites in this PFT, the magnitude of GPP fails to get close

to the magnitude of the observations, both before and after optimisation. However, it is hard to pick out a general pattern for

this PFT, since there are only 5 sites in this set.30

Overall, the adjoint performs well in improving the performance of JULES at individual sites, regardless of PFT. The

systematic underestimation of GPP in default JULES, improves the most. This larger improvement in GPP fit reflects the larger
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Figure 2. Time-series plots for LE (left) and GPP (right) for a single site in each of the different PFTs. Observations (black) are compared to

the original JULES runs (red) and the runs using the optimal parameters found at each individual site locally (blue).

set of optimised parameters that are exclusively related to the carbon cycle. Different parameters may need to be incorporated,

for example some soil ones, for the LE flux to improve further.
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Figure 3. The effect of parameter vectors z vectors on the overall model-data fit at each of the sites tested, using the metric described in

section 2.5.2. Original default JULES parameters (∗), site-specific optimal parameters (∗), and the multisite parameters found by optimising

over each set of five sites (•◦,•◦,•◦,•◦), denoted set 1, set 2, set 3, set 4 respectively. Sites in the training set (filled circles), sites in validation

set (open circles).

3.2 Multisite Validation

Broadleaf sites were used to validate the multisite methodology. This PFT is the best represented in the FLUXNET network,

though since the broadleaf set is large and spans a wide range of climatologies, only deciduous sites were considered.

Optimisation was performed four randomly selected sets of five sites were. The optimal parameter vectors were then tested

at the remaining sites. The results are shown in Fig. 3.5

The optimised parameter vectors generally perform well, both on the sites used in the training sets and the sites used in the

validations sets. Indeed 15/18 of the sites improve no matter which of the optimised parameter vectors are used. The parameter

vector optimised over set 3 performs even better than the individual optimisations for some of the sites. JULES performed

worse on just two sites (UK-PL3, US-Ha1) using these parameter values compared to the default JULES parameters. These

two sites also start off with relatively small errors, so even with the slight increase in errors they are still among the best10

performing sites in the set. UK-PL3 does not improve with any of the 5-site parameter sets, but observations from this site

appears to be somewhat unusual (e.g. it has a very different seasonality to the rest of the sites for this PFT).
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It seems likely that the adding more sites to a multisite optimisation smooths the cost function and makes it less likely for

the optimisation to get stuck in local minima. This may be one of the reasons that some of the 5-site optimisation works better

than the single-site optimisation for certain sites.

Overall the results are promising, showing that the optimised parameters, even when calibrated from a small subset of sites,

can be generalised over the rest of the set.5

3.3 New PFT parameter values

Optimisations were performed over all available sites for each of the PFTs simultaneously. The optimised model parameters

for each of the PFTs are presented in Fig. 4.

For half of the parameters, the original parameter value is found outside the new uncertainty bounds. The δc
δl parameter,

which determines the efficiency of rainfall interception by the plant canopy, does not change much from its original value for10

any of the PFTs. The uncertainty bounds are relatively tight and symmetrical. The rest of the parameters show more variation.

As described in section 2.5.1, the optimal values need not be in the centre of the uncertainty range, the uncertainties can be

skewed. Most the PFTs display high uncertainty in at least one of the the parameters optimised; for the optimised broadleaf set

for example, dqc is highly unconstrained. For C4 grasses, dr is so unconstrained, even the optimal value found is outside of the

80% confidence interval. C3 grasses shows large uncertainty in n0 and for shrubs, the parameter with the largest uncertainty is15

α.

The uncertainties shown in Fig. 4 are one-dimensional marginal distributions. To understand further how the parameters are

correlated, consider the two-dimensional representation in Fig. 5. For all the PFTs, the new parameter uncertainties exclude a

large part of the prior ranges.The cloud of plausible points tends to be restrictive and tight for most parameters.

The majority of the broadleaf parameters, shown in Fig. 5(a), are highly correlated with each other. The dr and δc
δl parameters20

are the only ones to be uncorrelated with other parameters. Similarly, the needleleaf parameters (Fig. 5(b)) are all highly

correlated, either positively or negatively, except for Tlow, which is completely uncorrelated with any of the other parameters.

For C3 grasses,(Fig. 5(c)), the parameters which show no correlation between themselves and any other parameters are Tlow
and δc

δl . The dr parameters shows varying levels of correlations with the other parameters. The rest of the parameters are highly

correlated.25

All the C4 grass parameters (Fig. 5(d)) are completely uncorrelated, with the exception of of the parameter pair dr and dqc,

which covary. For the shrub optimised parameters (Fig. 5(e)) , n0 is negatively correlated with f0 and dqc. The rest of the

parameters are not correlated.

The parameter vectors showing the highest correlations belong to the broadleaf and the needleleaf optimisations, for which

there are more measurement sites. Such a high correlation between parameters may therefore be related to the number of sites30

used in the optimisation.
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3.3.1 The performance of the new PFT parameters

The performance of the PFT-specific parameters are compared to the default JULES values and the results of the model

optimised independently at each measurement site. This is shown in Fig. 6. The lower the error, the better the model fits the

observations, and so the better performing the parameter vector is.

All sites are improved using the locally optimised parameter vectors. For the majority of sites, this decrease in error is5

substantial. Only the outliers, which start with large initial errors, and the C4 grass site show little improvement. For the C4

grass sites, the initial error is low due to the fact these sites have incomplete data.

The new PFT-specific parameter vectors improve JULES performance over 92% of the sites used in this study. The new

broadleaf parameter vector significantly improves 25 of the 28 broadleaf sites, and a further two of the sites give errors similar

to when the default parameters are used. Only UK-PL3 gets notably worse. Considering this site more closely, it can be seen10

to behave differently from the rest of the sites in the set, both in magnitude of the fluxes and seasonality.

The needleleaf sites improve greatly when using the new needleleaf parameter values, with a third of the sites nearly per-

forming as well as the single-site optimisations. The only site this new parameter vector does not improve is CA-Qcu, which

was one of the sites with the lowest initial error. As with averaging, sites with the best fit may have to be sacrificed to achieve

a generic parameter set across the PFT. The new error still remains relatively low.15

For the C3 grass site, there is a reduction in error for 9 of the 11 sites when using the new parameters. The last two sites in

the set act similarly to when the default parameters were used. For the C4 grass sites, which started with relatively low errors,

the new parameter vector improves the sites slightly. However, the set of two sites is too small to draw any proper conclusion

about the C4 grass parameters. There is a clear need for more data from C4 grass sites. Finally, the Shrubs can be seen to

improve for all the sites.20

In the case of the outliers, the new PFT-specific parameter vectors improves JULES performance even relative to the single-

site optimisations. A further 9 sites of the whole set of sites improve to a greater extend than the local optimisations.

4 Conclusions

adJULES enables objective calibration of JULES against observational data, providing best fit internal parameters and the

associated uncertainty ranges. The adJULES fits of JULES against individual FLUXNET sites show significant improvements25

in the performance of JULES compared to default parameters, typically in both the simulation of LE and GPP. All of the sites

in this study improve when optimised locally, with the GPP flux improving most significantly.

The study is partially motivated by the desire to improve the performance of JULES within the Hadley Centre’s Earth System

Models, which means needing to find best fit parameters for a relatively small number of PFTs. This is achieved by classifying

the FLUXNET sites into groups dominated by each JULES PFT (BT, NT, C3G, C4G, Sh) and using adJULES to find the best30

fit parameters for each of these PFT groupings. Although the PFT-specific parameters inevitably do not fit the data as well as

site-specific parameters, they still offer significant improvements of the default JULES parameters. For over 90% of the sites,

the new PFT-specific parameters are better than default parameters giving closer model-data fit.
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For some PFTs (notably C4G and Shrubs) there are insufficient FLUXNET sites to determine optimal parameters satisfac-

torily. Additional data and sites for these PFTs are therefore urgently required.

It is, however, clear that there are some limitations to the success of the optimisation results. Certain sites still show significant

differences between model output and observations. These issues indicate that improvement to model physics may be necessary

in order to produce better model output. This is because adJULES produces the best possible fit to observations, given the5

existing model physics and the prescribed driving data. If the fit is still inadequate, it is down to the model and data themselves,

rather than parameter values. adJULES therefore also enables model structural errors to be identified.

A successful and robust multisite optimisation assumes that sites can be grouped and parameter values can apply to several

sites at once. Whilst the PFT generic parameters show great improvement, agreeing with the general 5-PFTs definition found

in JULES, there is a possibility to rethink the PFT definitions and group sites differently. This could be done either by looking10

more closely at the site specifics detailed by the FLUXNET database, or by considering the single-site optimisations and

performing a cluster analysis to empirically identify PFTs.

Code availability

The source code of the adJULES data assimilation system is available at http://adjules.ex.ac.uk/. JULES land surface model is

freely available to any researcher for non-commercial use. Version 2.2 used in this study can be requested at jules.jchmr.org.15

The main documentation for the JULES system can also be found at this site. The adjoint of the JULES model has been

generated using commercial software TAF (sect. 2.2.1). For licensing reasons, the recalculation of the adjoint following code

changes can only be done by us here at Exeter.
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Table 1. Parameters in optimisation vector, with descriptions.

Symbol Name in code Description Units

n0 nl0 Top leaf nitrogen concentration kg N (kg C)−1

f0 f0 Maximum ratio of internal to external

CO2

-

dr rootd_ft Root depth m

α alpha Quantum efficiency mol CO2 per mol PAR photons
δc
δl

dcatch_dlai Rate of change of canopy interception

capacity with LAI

kg m−2

Tlow tlow Lower temperature for photosynthesis ◦C

Tupp tupp Upper temperature for photosynthesis ◦C

dqc dqcrit Humidity deficit at which stomata close kgkg−1
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Figure 4. JULES parameters optimised in this study (Table 1). Initial values for each PFT are given, and below in bold are optimised values.

The error bars show the uncertainty ranges given as a 80% confidence interval. The range of the box is the allowed range of the parameters

were allowed to vary over. Highlighted in red are the error bars for which the prior values (dotted line) are found outside the new uncertainty

bounds. A numerical version of this table exists in Appendix B.
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Figure 5. The correlations between the optimised parameters found at each of the PFTs. Each subfigure shows a two-dimensional correlation

map and with each subfigure, each box is a 2-D marginal plot. Bar graphs show 1-D marginal distributions of the individual parameters.

The dimensions of the boxes represent the allowed range of each parameter. Red points/dashed lines represent initial parameter values. Blue

points/dashed lines represent the new optimised parameter values and the blue contours define the cloud of possible parameter values.

(a) Broadleaf

(b) Needleleaf

1
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(c) C3 grasses

(d) C4 grasses

2

Figure 5. continued
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(e) Shrubs

3

Figure 5. continued

22

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2015-281, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 20 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 6. The effect of different parameter vectors on the overall model-data fit at each of the site tested, using the metric described in section

2.5.2. The three z vectors tested: the original default JULES parameters (∗), the parameter vector found by optimising at the individual sites

(∗), the new PFT-specific parameter vector found by optimising over the given PFT (•). Outliers with very large initial errors have been

removed from the plot shown (Broadleaf: BR-Sa3, IT-Lec, Needleleaf: CA-NS2, SE-Sk2, IT-Yat, IT-Lav).
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Table A1. Sites used in this study, the name code is made from the country (first two letters) and site name (last three letters). The period

corresponds to the available years of data for each of the sites.

Site Period Experiment Year Latitude Longitude

Broadleaf sites (BT)

DE-Hai (2000, 2006) 2005 51.0793 10.452

DK-Sor (1996, 2006) 2006 55.4869 11.6458

FR-Fon (2005, 2006) 2006 48.4763 2.78015

FR-Hes (1997, 2006) 2003 48.6742 7.06462

IT-Col (1996, 2006) 2005 41.8494 13.5881

IT-LMa (2003, 2006) 2006 45.5813 7.15463

IT-Non (2001, 2006) 2002 44.6898 11.0887

IT-PT1 (2002, 2004) 2003 45.2009 9.06104

IT-Ro1 (2000, 2006) 2006 42.4081 11.93

IT-Ro2 (2002, 2006) 2004 42.3903 11.9209

UK-Ham (2004, 2005) 2005 51.1208 -0.86083

UK-PL3 (2005, 2006) 2006 51.45 -1.26667

US-Bar (2004, 2005) 2005 44.0646 -71.28808

US-Ha1 (1991, 2006) 1996 42.5378 -72.1715

US-MMS (1999, 2005) 2002 39.3231 -86.4131

US-MOz (2004, 2006) 2006 38.7441 -92.2

US-UMB (1999, 2003) 2003 45.5598 -84.7138

US-WCr (1999, 2006) 2005 45.8059 -90.0799

AU-Tum (2001, 2006) 2003 -35.6557 148.152

AU-Wac (2005, 2007) 2006 -37.429 145.187

BR-Sa1 (2002, 2004) 2003 -2.85667 -54.9589

BR-Sa3 (2000, 2003) 2002 -3.01803 -54.9714

FR-Pue (2000, 2006) 2006 43.7414 3.59583

ID-Pag (2002, 2003) 2003 2.345 114.036

IT-Cpz (1997, 2006) 2004 41.7052 12.3761

IT-Lec (2005, 2006) 2006 43.3046 11.2706

PT-Esp (2002, 2004) 2004 38.6394 -8.6018

PT-Mi1 (2003, 2005) 2005 38.5407 -8.0004

C3 grasses sites (C3G)

DE-Gri (2005, 2006) 2006 50.9495 13.5125

DK-Lva (2005, 2006) 2006 55.6833 12.0833

ES-LMa (2004, 2006) 2006 39.9415 -5.77336

HU-Bug (2002, 2006) 2006 46.6911 19.6013

HU-Mat (2004, 2006) 2006 47.8469 19.726

IT-Amp (2002, 2006) 2006 41.9041 13.6052

PL-wet (2004, 2005) 2005 52.7622 16.3094

PT-Mi2 (2004, 2006) 2006 38.4765 -8.02455

US-Bkg (2004, 2006) 2006 44.3453 -96.8362

US-FPe (2000, 2006) 2002 48.3079 -105.101

US-Goo (2002, 2006) 2006 34.25 -89.97
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Table A1. continued
Site Period Experiment Year Latitude Longitude

Needleleaf sites (NT)

CA-Man (1997, 2003) 2001 55.8796 -98.4808

CA-NS1 (2002, 2005) 2004 55.8792 -98.4839

CA-NS2 (2001, 2005) 2002 55.9058 -98.5247

CA-NS3 (2001, 2005) 2004 55.9117 -98.3822

CA-NS4 (2002, 2004) 2004 55.9117 -98.3822

CA-NS5 (2001, 2005) 2004 55.8631 -98.485

CA-Qcu (2001, 2006) 2005 49.2671 -74.0365

CA-Qfo (2003, 2006) 2006 49.6925 -74.3421

CA-SF1 (2003, 2005) 2004 54.485 -105.818

CA-SF2 (2003, 2005) 2004 54.2539 -105.878

CA-SF3 (2003, 2005) 2005 54.0916 -106.005

DE-Bay (1996, 1999) 1999 50.1419 11.8669

DE-Har (2005, 2006) 2006 47.9344 7.601

DE-Tha (1996, 2006) 2005 50.9636 13.5669

DE-Wet (2002, 2006) 2006 50.4535 11.4575

ES-ES1 (1999, 2006) 2005 39.346 -0.31881

FI-Hyy (1996, 2006) 2006 61.8474 24.2948

FR-LBr (2003, 2006) 2006 44.7171 -0.7693

IL-Yat (2001, 2006) 2005 31.345 35.0515

IT-Lav (2000, 2002) 2001 45.9553 11.2812

IT-Ren (1999, 2006) 2005 46.5878 11.4347

IT-SRo (1999, 2006) 2006 43.72786 10.28444

NL-Loo (1996, 2006) 2006 52.1679 5.74396

RU-Fyo (1998, 2006) 2005 56.46167 32.92389

RU-Zot (2002, 2004) 2003 60.8008 89.3508

SE-Fla (1996, 1998) 1998 64.1128 19.4569

SE-Nor (1996, 1999) 1997 60.086 17.480

SE-Sk2 (2004, 2005) 2005 60.12967 17.84006

UK-Gri (1997, 1998) 1998 56.60722 -3.79806

US-Blo (1997, 2006) 2006 38.8952 -120.633

US-Ho1 (1996, 2004) 2004 45.2041 -68.7403

US-Me4 (1996, 2000) 2000 44.4992 -121.622

US-SP1 (2000, 2001) 2001 29.7381 -82.2188

US-SP2 (1998, 2004) 2001 29.7648 -82.2448

US-SP3 (1999, 2004) 2001 29.7548 -82.1633

Shrubs sites (Sh)

CA-Mer (1998, 2005) 2004 45.4094 -75.5186

CA-NS6 (2001, 2005) 2003 55.9167 -98.9644

CA-NS7 (2002, 2005) 2003 56.6358 -99.9483

IT-Pia (2002, 2005) 2003 42.5839 10.0784

US-Los (2001, 2005) 2005 46.0827 -89.9792

C4 grasses sites (C4G)

BW-Ma1 (1999, 2001) 2000 -19.9155 23.5605

ZA-Kru (2001, 2003) 2002 -25.0197 31.4969
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Table B1. Parameters of JULES optimised in this study as described in table 1. The prior values for each PFT are given along with the

initial ranges allowed. Below in bold are the optimised values and uncertainty ranges given as a 80% confidence interval (in parentheses).

Optimised values for which the prior values are found outside the new uncertainty range highlighted by (*).

BT NT C3 C4 Sh

n0 0.046 0.033 0.073 0.06 0.06

(0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2)

0.061 0.065* 0.07 0.051* 0.041

(0.034,0.066) (0.059,0.07) (0.018,0.145) (0.043,0.056) (0.006,0.066)

α 0.08 0.08 0.12 0.06 0.08

(0.001,0.999) (0.001,0.999) (0.001,0.999) (0.001,0.999) (0.001,0.999)

0.131* 0.096 0.179* 0.118* 0.102

(0.087,0.14) (0.021,0.167) (0.155,0.209) (0.075,0.141) (0.063,0.763)

f0 0.875 0.875 0.9 0.8 0.9

(0.5,0.99) (0.5,0.99) (0.5,0.99) (0.5,0.99) (0.5,0.99)

0.765* 0.737* 0.817 0.765* 0.782*

(0.655,0.787) (0.713,0.758) (0.727,0.944) (0.752,0.793) (0.735,0.848)

Tlow 0 -10 0 13 0

(-50,40) (-50,40) (-50,40) (-50,40) (-50,40)

1.203 -8.698 -1.985* 11.37 -5.208*

(-0.555,9.492) (-10.98,-6.342) (-3.877,-0.13) (7.522,14.072) (-10.855,-2.106)

Tupp 36 26 36 45 36

(25,50) (25,50) (25,50) (25,50) (25,50)

38.578* 34.721* 36.242 44.897 35.385

(38.157,40.698) (33.214,36.365) (33.087,38.599) (44.201,46.426) (26.339,40.216)

dr 3 1 0.5 0.5 0.5

(0.1,4) (0.1,4) (0.1,4) (0.1,4) (0.1,4)

3.009 1.425* 0.991* 0.404* 0.411*

(2.901,3.052) (1.159,1.672) (0.901,1.101) (0.5,3.623) (0.324,0.473)
δc
δl

0.05 0.05 0.05 0.05 0.05

(0.001,0.1) (0.001,0.1) (0.001,0.1) (0.001,0.1) (0.001,0.1)

0.047* 0.045* 0.05 0.05 0.048

(0.046,0.049) (0.042,0.048) (0.047,0.052) (0.046,0.054) (0.04,0.055)

dqc 0.09 0.06 0.1 0.075 0.1

(0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2) (0.001,0.2)

0.048 0.036 0.086 0.046* 0.077

(0.02,0.183) (0.008,0.066) (0.07,0.109) (0.045,0.053) (0.024,0.118)
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